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Quenched Disorder in a Hierarchical 
Coulomb Gas Model 

D a v i d  M u n t o n  1 
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The effects of quenched disorder on the two-dimensional Coulomb gas are 
studied in the hierarchical approximation. The quenched random variables 
interact with the charges via a potential that decays as an inverse power (e) of 
the distance. Recursion relations for the single block charge activities are 
derived in which the quenched variables explicitly appear. In a linear 
approximation, for all e/> 1, with some restrictions on the variance of the nor- 
mally distributed random variables, it is shown that the charge activities con- 
verge to the Kosterlitz-Thouless fixed point for all sufficiently low temperatures 
and sufficiently large blocks. The annealed system is also examined. This model 
is shown to have a Kosterlitz-Thouless phase only for an intermediate range of 
temperatures. At low temperatures the activities can diverge, and large charges 
can exist on all length scales. 
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1. I N T R O D U C T I O N  

One of the most difficult problems of current interest in condensed matter 
physics is the treatment of "disordered" materials. Much of the interest 
arises from the behavior of magnetic materials known as spin-glasses which 
appear to exhibit an equilibrium phase transition of an unusual type. (1-3) A 
great deal of effort has been expended in developing a variety of models for 
spin-glass materials, (1'2) of which the mean field Sherrington-Kirkpatrick 
model is the most notable example, (4) in an effort to elucidate the nature 
of this phase transition. Only in a few special cases have these models 
yielded to rigorous analysis. (5-1~ 

The two-dimensional X Y  and Villain models with quenched disorder 
have been studied in the context of spin-glasses. (H-~4) Without disorder 
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these two-dimensional models undergo a Kosterlitz-Thouless phase trans- 
ition (at a critical temperature flKa-) which can be connected with the phase 
transition occurring in the two-dimensional Coulomb gas via the sine-Gor- 
don transformation. (15 19,14) The vortices present in the spin vector field can 
be viewed as two-dimensional electrostatic charges. At high temperatures 
(fl <fli~a-) the gas exhibits Debye screening, (2~ while at fl> flKT charges 
become bound in dipoles and screening no longer o c c u r s .  (16'17'21) 

The effect of disorder on the behavior of the two-dimensional X Y  

model can be translated into an equivalent problem involving a Coulomb 
gas with quenched disorder. Previous investigations of both the disordered 
X Y  and Villain models have considered two types of quenched disorder: 
random bond disorder (11'12'14) and a random Dzyaloshinskii-Moriya 
(DM) interaction. (13) Each of these has a different interpretation in the 
Coulomb gas picture. 

Random bond disorder has been considered by Villain, (14) 
FradkinetaL,  (11) and Jose. (12) The randomness is incorporated into the 
models as a set of random phase shifts Zu, so that, in the case of the nearest 
neighbor X Y  model, the interaction becomes 

v U = cos (0 i -  0 j -  z0) (1) 

with )~0= - )~ ,  i and j nearest neighbors on the square lattice Z 2. In the 
Coulomb gas representation the effect of this type of disorder is to produce 
charges qk + fk at the sites of the dual lattice. Here qk is an integer, but fk 
is a noninteger related to the ;g~ through the relation 

27zfk= ( ~ Z,j) mod(2rc) (2) 
( / j )  e Ok 

where ak denotes the boundary of the plaquette containing the site k. J6se 
studied the case in which the f ,  could take on only the values 0 and + 1/2. 
In the case of dilute randomness, in which most fk were 0, he found the 
power law decay of correlations was preserved, but that for densities of 
frustrations near 1/2 the two-point function decays exponentially fast 
for large separations and the magnetic susceptibility is finite at low 
temperatures. Large amounts of fractional charge disorder destroy the 
KT phase transition. 

The random DM interaction was first considered by Rubinstein et al. 
(RSN) (13) and occurs in addition to the usual X Y  spin-spin coupling. The 
form of the random DM interaction is 

Ju~. (s, • sj) (3) 
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where the Jij are random variables of mean 0 and variance 0 "2, and i and 
j are nearest neighbors. RSN conclude that this model is equivalent to the 
two-dimensional Coulomb gas perturbed by a set of quenched random 
dipoles p(r). The charge dipole interaction energy is given, in the 
continuum approximation, by 

p(r)- (ri r) 
Z qi Vi, j = Z qi f dr i,j ~ ( r i - r )  2 (4) 

The most interesting feature of this model that RSN uncover is that, in 
addition to the KT transition, there is a new vortex (dipole) unbinding 
phase transition that occurs at some/?c >/3KT provided a is not too great. 
For /~ >/~c activities for nonzero charges begin to grow. All evidence of 
phase transitions disappears completely for variances larger than a critical 
value 0-c. 

An interesting connection between two-dimensional Coulomb gas 
models and networks of superconducting Josephson junctions has been 
made. Teitel and Jayaprakash,(22~ in connection with resistive transitions in 
networks of Josephson junctions in magnetic fields, studied the behavior of 
uniformly frustrated X Y  models as the frustration was varied. Granato and 
Kosterlitz (GK) (23'24) considered the possibility of adding randomness to 
such networks in the form of random positioning of the network nodes and 
random variations in the size of the network elements. They showed that 
in the former case the network could be mapped into the Coulomb gas 
with quenched random dipoles, while the latter mapped into the Coulomb 
gas with fractional charges. Based on the analysis of RSN, GK deduce that 
a disorder-induced low-temperature phase transition may occur in these 
networks in the case in which all f~ are integers. 

Choi et al. ~25) investigated networks similar to those of GK, but in 
which all f~ = 1/2 (the fully frustrated limit). They find no evidence for 
reentrant behavior in this model, although their results are not conclusive. 

These Josephson junction networks provide a concrete experimental 
setting in which the predicted behavior of these models can be tested. 
Experiments and numerical studies (26-29) have been undertaken in this 
direction; however, at present there seems no strong evidence for the 
occurrence of this low-temperature vortex unbinding transition. 

In this work I consider the effects of adding quenched disorder to the 
hierarchical Coulomb gas model of Marchetti and Perez (MP). O~ In the 
next section the structure of the model and the form in which the quenched 
disorder is to be introduced will be discussed. Nonlinear equations govern- 
ing the behavior of the single block charge activities, and involving the 
quenched random variables, are derived. It is the behavior of the block 
charge activities which will be studied in this work. In Section 3 iterations 
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of the linearized version of the equations derived in Section 2 are studied. 
Under a variety of conditions the behavior of the single block charge 
activities shows no growth at low temperatures, i.e., no sign of a reentrant 
transition, although the existence of a critical variance cannot be com- 
pletely ruled out. Finally, in Section 4 the annealed version of this model 
is studied, and I show that while the KT phase occurs for an intermediate 
range of temperatures, at low temperatures large charges form an all length 
scales of the model. 

2. T H E  M O D E l .  

In the two-dimensional lattice Coulomb gas, a set of integer charges 
{qi} interact through a potential of the form 

1 
Vii ~ ~ ln(d(i, j))  (5) 

where i, j E Z  2. The partition function for this gas can be written 

Z =  ~ 1-[ 2(q;)exp - ~ q ~ q j V ~ j  (6) 
{qi} iEA  lJ 

~'iqi--O 

where the 2(q) represent the single-site activities of the charges, analogous 
to the single-site spin measures present in the hierarchical Dyson spin 
models. 

The hierarchical model of MP is defined by replacing the Coulomb 
potential in Eq. (6) with the potential 

1 
V~ h) = - ~ ln(dL(i, j)) (7) 

where the hierarchical distance dL(i, j) is 

dL(i, j)  = min {L u I [i/LN] = [J/Lu] } 
N>~ I 

(8) 

and Ix]  = integer part of x. Here L is a fixed number and represents the 
basic length scale of the model. The energy of a system of charges in 
volume Auo, of length L u~ is 

EAN0({q}) = ~ V (h) qiqj o (9) 
i , j ~ A N  0 

The introduction of disorder in the form of fractional charges can 
easily be accomplished by simply replacing q g ~ q i + f i ,  and where the 
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overall neutrality condition becomes 52/(qi+fi)=0.  In the two-dimen- 
sional model there will generally be correlations between the values of the 
fi, but here there is no need to assume this. 

The "random dipole interaction" takes the schematic form 

L 
Vran({qi}) = Z qid~,i . ,  (10) 

i,j~ANo L[ ' J) 

where the ~i are independent and identically distributed random variables, 
and the angular dependence does not appear. However, this preserves both 
the power law decay and the random variation in magnitude and sign of 
the original potential. A power e ~> 1 has been added to the denominator 
of Eq. (10), allowing for arbitrary power law interactions to be considered. 

The statistical mechanics of this model is determined by the partition 
function 

Z= ~ 1-[ 2(qi) e -(lV2)EaNo({q+f}) (fl/2) Vran({qi}) (11) 
{qi} iEA 

Y'iqi+ fi=O 

where 

EA({q+ f } )  = ~ (qi+ fi)(qj+ ffl Vb h) (12) 
i, jEA 

It is now possible to sum out all charges on length scale L and replace 
them with block charges on length scale L 2. An easy extension of the 
analysis of MP shows that 

(qi + f,)(qj + fj) V~ h) 
ij 

1 ln (L)~  (qb+fb)2+ ~ (qb+fb)(q~'+fb') V(h) (13) : - -  - -b ,  b '  
2n b b,b' 

where each block b consists of the L 2 sites i from the original model for 
which [i/L] = m for some fixed m, and 

qb= ~ qg (14) 
icb 

fb=  ~ f,- (15) 
i~b 

The random dipole part of the interaction can be written as 

Vran({qi})=CL Z qi~iAvZ,  qbdL(~lb'bt u" ( 1 6 )  
i~AN 
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where the block random variable ~b is 

1 
~b=z~ 2 ~i (17) 

i~b 
and c L = L - ~ ( 1 - L  ~). 

Equation (17) suggests the following. If the ffi are assumed independ- 
ent and identically distributed normal random variables, if ~ >  1, the 
variance of the ~ is driven to 0 as the length scale becomes larger. This 
suggests that the disorder may have a local effect on the system, but on 
sufficiently long length scales may not. If ~ = 1, the variance of the block 
random variables is unchanged under the scaling and so the disorder may 
have more of an effect on the system. 

With Eqs. (13) and (16) we can write the partition function in terms 
of the block variables as 

Z =  Z H 2 b ,  fb,~b(qb) e-(B/2)EAN l({qb+fb}) (fl/2) Vran({qb}) ( 1 8 )  
{qb} b 

where the neutrality condition Y~b (qb + f b ) =  0 holds. The new single block 
charge activities 2b, fb are given by the equation 

)~b.f~,,~b(qb) =e-(#/4~)ln(L)(qb+j~')2 ~ H 2(qi) e-(#/2lczq~-i (I9) 
{qi}i~b i~b 

"Y" qi = qb 

Defining the functions 

2i(qi) = 2(q) e (~/2)cLq~i 

we can write this more compactly as 

f~t,,A,~b( qb ) = e-  (a/a~) ln(L )(qb +fb) 2 -- (/3/2) CLqbr b 

x (2,.r * "~2,~ * ' " *  2z.z.c~)(qb) (20) 

where the operation �9 denotes convolution. 
To simplify the analysis, all f i  are set equal to zero, leaving only the 

schematic random DM interaction. With L2=  2, Eq. (20) becomes 

~b,r = e (/3/4~z)In(L)q~--(fl/2)CLqbCb(~l,r 1 , 22,c~)(qb) (21) 

Following MP, the equations for the activities can be normalized, and 
written in the form 2(q)= 6q-O + e(q), with e(0)= 0. Then the single block 
charge activities satisfy 

eb,~b(qb) = e (fl/4~z)ln(L)q~ (fl/2)CLqb~b (/~1 "t- 82 ) (qb )  "4- (~:1 * ~3z)(qb) (22) 
1 + ( ~  �9 ~ ) ( 0 )  

for qb =fi O. 
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For each site i, take the function 

e~(qt) = e(q~) e - ( ~ / 2 ) ~ r  (23) 

to be an element of lt, the Banach space of absolutely summable sequences 
with norm 11 f [t l = }2q [f(q)l. 

Define 

T(el, ez)(q) = (el + e2)(q) + (el * e2)(q) 
1 -t- (~1 * ~2)(0)  

(24) 

and also, for any f 6  l,, define the functions Hr by 

(H~o f ) (q )  = Hc_~(q) f ( q )  

= e -(fl/4rr)In(L) q2 _ (,6/2) C L ( b q f ( q )  

(25) 

(26) 

It is fairly simple to show that if e~ e Ii for all i, then Hch T: l 1 X l 1 --~ lx. 
Finally, if we consider the subspace of l~ 

then for each block b, 

71= { t E l  1 [ ~ ( 0 ) = 0 }  (27) 

Hr l l x l  1 ~ l  1 (28) 

Let B denote the collection of all subblocks b of the system. With the 
ordering ___, the set B forms a directed system. (32) The collection of all 
functions {eb}b~ indexed by the elements of B forms a net in ll, or more 
specifically in I1. If I is a directed system with ordering >-, then there is the 
following notion of convergence(32): 

D e f i n i t i o n  1. A net {x~}~z in a topological space S is said to 
converge to a point x c S if for any neighborhood N of x, there is a fl s I 
so that x~ ~ N if c~ >- ft. 

The presence of a KT phase should appear as the convergence of the 
net of nonzero charge activities to 0, leaving only a unit activity concen- 
trated on the charge q = 0. The existence of a reentrant phase transition, in 
which free charges again begin to appear, should be characterized by a net 
of charge activities which exhibits growth in the direction of at least some 
nonzero values of q. 

Note that if e = 0 for each site i, then 

Hr T(0, 0) = 0 (29) 
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Motivated by linear stability theorems for conventional fixed-point 
equations, consider replacing the map T with its Frechet derivative 

A(el, 52) = el + e2 (30) 

The equation governing the behavior of the charge activities is then 

eb(qb) = [HebA(~I ,  ~2)](qb) (31) 

In the next section we consider the behavior of the net {eb}b determined by 
this family of equations. 

3. BEHAVIOR OF THE CHARGE ACTIVITIES 

In this section we label all activities e(b "), where n indicates b is a block 
on length scale L" + 1. The size of the system is L u~ implying 0 ~< n ~< No. 
The limit of large n implies allowing N O to simultaneously become large, 
but because the behavior of the block charge activity depends only on 
quantities within the block, this will not be of concern here. 

3.1. Weak  Disorder, a i>2 

We begin with a simple case, in which the variables {~/} are independ- 
ent and identically distributed, with distribution having support on the 
compact interval [ -  W, W]. 

T h e o r e m  1. Let 0 < 3 < 1. If c~ >/2, then there exists an no, depend- 
ing on 3, such that if n > no, then for/~ > 8~ / (1 -  3) there exists a 0 < ~ = 
~(/~, 3) < 1 such that 

i1~11 x ~ ~n ii~(O~ll ~ (32) 

for any block b on length scale L n. 

From Eqs. (31) and (17) it follows that for any block b, 

e(b 1)(q) ~< 2e (/3/4~)In(L)q2 + 13eL Iql W(1 + (2/L'))~3(O)(q) (33) 

where the random variables have all been replaced by their maximum 
values. Iterating this procedure yields 

e(bl)(q) <~ 2% -(,,8/4~z)In(L) q2 + flWc Iqlg(O)(q) (34) 

C n Lk(2 ~) w h e r e c =  LZk=O . I f  

no = [4Wcrc/3 In(L)] + 1 (35) 
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and n > n o, then for all charges q 

e(bn)(q) ~< 2he (,6'/4~z)ln(L)(l - -  a)e(0)(q ) (36) 

From this last the following is clear: 

]le~)t] 1 ~< 2.e-(~./4~)1.(c)(1-a) ii~O~lix (37) 

With x = 2 e  (a/a~)~n~c)(1-~) the result follows. | 

3.2. Gaussian Disorder 

In order to deal with normally distributed random variables, it is 
convenient to iterate Eq. (31) and rewrite the result. For  a block b at the 
level n = 1 

e(bl~b(q), = ha, c(q)(e~O)(q) e-(a/2)cLqfb..~ e@(O) (q) e -  (B/2)cLqCb) (38) 

where i and j are the two (L 2) sites in block b, and 

h~,c(q) = e -(/~/47t)ln(L)q2 (39) 

Recalling Eq. (23), 

g(bl)(q) ---- ha, L(q)(e(~ e-(/~/2)cLq((i+ (b) _~ e(O)(q) e -(~/2~ ~Lq(~j+ ;b)) (40) 

Using Eq. (17) yields 

+ { - f l  1 

Repeating this procedure n times, we find 

e(b")(q) 
e(O)(q) = h~,L(q) Z exp{ --~ccq(~r "e)} (42) 

7 

Each 7 represents a set of subblocks of a block on scale L", taken in a 
particular order, and can be written as 

7 = {i, b~(i), b2(i),..., b, ~(/)} (43) 

where i is a site in the original lattice, and bk(i) is the set of all sites which 
are at a distance L k+l from site i. There are (L2)" different 7, one for each 
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site in the block on length scale L" containing the site i. The components 
of the vector ~ ,  with 7 having initial site i, are given by 

(i, k = 1 

j ~ bk(i) 

(44) 

where b~(i) e7. While the random variables appearing as components in 
the ~ are independent, the components of ~ and ~, are not. 

The vector e is the vector with n components given by 

c =lJ=~ 2 L - ( k -  1)(~- 1)- 1 L-~J, 
j=0 

k = l  

l < k ~ n  

The c~ form a decreasing sequence with 

1 1 L ~ 

L ( k - 1 ) ( ~ - a ) - l < C k < L ( k - 1 ) ( ~ - l )  1 L ~ _  1 (45) 

Since the {~i} are taken to be independent, normally distributed ran- 
dom variables, with mean 0 and variance ~, it is convenient to incorporate 
the variance directly into Eq. (42) so that all ~i are of unit variance. 

e(bn)(q) = h},L(q) ~ exp{ --fl~cLq(~ 7 �9 c)} (46) 
e(~ 

From Eq. (44) it is clear that each of the components of 47 will also be 
normally distributed with unit variance. 

Equation (42) is similar to the partition function of Derrida's 
generalized random energy model (GREM)/TM Using the probability space 
consisting of, for all n > 0, 2 n independent random variables along with the 
product measure, we can adopt the methods used by Capocaccia et al. 
(CCP) ~34) to study the GREM and prove the following result. 

T h e o r e m  2. Let K > 1 and 0 < 7 < 1. If c~ > 1, then with probability 
one there exists an no(~, 7) and a 0 < 6(fl)< 1 such that for all n > no((, ?), 

[[e(")ll 1 ~ 2n~6n(fl) Ile(~ I (47) 

for all a, and for f l>  8n/(1 -7 ) -  
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If e = 1, then with probability one there exists an no(() and a 0 <  
c~l(fl) < 1 such that for all n > no((), 

Ile(")]l 1 ~< 2n'~6'; I[•(0)[[ 1 (48) 

provided a is sufficiently small and fl sufficiently large. 

We begin by defining the following events for a block of size Ln: 

Ak(n)= {(i}]VT, jv [=k , ( ;~ )2<  ~ 24-i ln(2)n 
\ j =  1 / 

where 17] is the number of blocks in the set 7. Note that the Ak(n ) are, for 
each k, compact, convex subsets of R n. The indicator functions of these 
events are given by 

10 if Ak(n) occurs 
1Ak(n/= if not 

The following are obtained from the work of C C P  (34) with slight 
modifications which are not presented. 

L e m m a  1 (CCP). There exists an r / l ( ( )  such that i f n > n l ( ( ) ,  then 
the following holds with probability one: 

f i  1Ak( .  ) = 1 
k = l  

L e m m a  2 (CCP). Let ~c>l. There exists an  rt2(() such that if 
n > n2((), then the following holds with probability one: 

~I 1Ak,,,,exp{--flccq(~'c)} <~nKE(~ I~ 1Ak(,,,exp{--flccq(~r'c)})(49) 
Y k 7 k 

Hence for n > max{n1, n2} we have 

e~bn)(q) 
e(~ 

with probability one. 
Defining the vectors y and ~ in R n by 

(50) 

y = ~/~fn (51 ) 

y = -- f lcLaqe (52) 
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we can write the expectation in Eq. (50) as 

E ( ~  klkI 1Ak(n' exp{ --/~ccaq(~ "c) }) 

2 ~ (exp ~ 2 , ~ ( ~  n/2 f dy 
2 j\2,~j 

n ~ 2 

where 

An = y6Rn[Vk<~n,~yZ<~ln(2)~(24 i) 
i i 

(53) 

(~ )2 < (flac L qc2(e) )2 (54) 

from which it follows that 

Y'Y<~ IlYll I1~11 (55) 

c3(~)/~G Iql (56) 

for y restricted to the set An. In this last the restriction given by 1A, has 
been used to replace HYI] by its largest possible value. With this, Eq. (53) 
becomes 

~< 2" exp{c3(e) nl/2fla Iq[} (57) 

Using Eq. (57) in Eq. (50), we obtain 

fin 

Summing over all q yields 

[[e(")t] 1 ~< n~{exp(2n In L)} 

X (q~lexp { - f l n [ l  ln(L) qZ-C3(CQa ,59, 

is a compact, convex subset of R ". 
Consider now the case c~ > 1. Then an easy calculation shows that 

there exists a constant c2(c~) such that 
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Let n > n~ = 16rc2c~(o:)ff2/y 2 in 2 L, with 0 < 7 < 1; then 

"e(n)"~ ~rlKe2nlnL ( E e--(~n/4g)(1--~')ln(L)q) lt~3(~ (60) 
q ~ l  

e2n In LH~ e -(fln/4~z)(1 -7)In L 

x (1--e  -(fln/4~)(1-7)lnL) ~ It~(~ (61) 

If fl > 8zt/(1 - 7), this last becomes 

with 

ll~n)l[l ~ 2n~5(fl)" II~~ (62) 

6(//) = e E-(fl/4rc)(1 -- 7) + 2] ln(L)n (63) 

<1 for / />  8re/(1 -- y) (64) 

Let n 4 be the value of n for which 2n~5(//) n is first less than one. Choosing 
n o --max{n1, n2,/'/3, r/4} completes the first part of the theorem. 

In the case ~ = 1 the argument is slightly different. Let y* be the vector 
in A, whose tip lies at the point in An at minimal distance from the point 
determined by s  ~/.~/-n. As shown by CCP, then, 

(y _ y,)2 >/(y _ y,)2 + (y ,  _ ~,)2 (65) 

from which Eq. (53) becomes 

E ( ~ I A k u , ) e x p { - - / / c L a q ( ~ > ' ' C ' } )  

~< 2n exp { ;  [(~',2-- (y* -- ~')2]} (66) 

since the normalized integrals are less than 1. 
Since ~ = 1, there exist constants Cl and c2 such that 

f12 2 2 2 2 2 2 2 2 2 tr cLq C 1 ~< (~,)2 (67) <<. fl a cLq c 2 

which follows from the definitions of e and ~. If the vector ~' lies in the 
region A,, then y * =  ~' and 

e~m(q) ~ f (2 In(L)-- // In(L) 2+ (Y')25] ~ < n  e x p ~ n _  ~ q ~ - - ) ;  (68) 

Note that for this bound there is a range of temperatures (//_(q), //+(q)) 
for which the exponent is negative, with fl_ ( 1 ) ~  8~ as a ~ 0. This range 
is centered on the value 2 2 2 1/81ra cLc 2 for each q. 
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For fl > fl+(1) this last bound is of no use. However, the estimate is 
slightly different if ~' is not in the region A,. A sufficient condition for the 
vector ~' to lie outside the region A. is that 

(~,)2 >/24 ln(2) ~ 2 - i  (69) 
i = l  

which will certainly be satisfied if 

2 i<  cJ2 2 2 2 2 24 ln(2) p a crq c 1 (70) 
i = 0  

This will be true provided/3 > 4 ~f2/acLcl, in which case Eq. (46) can be 
bounded by 

~(n)(q)~<n~2" exp - ~nln(L) q 2 - ~ ( y * ) e + n  lY*I I~'1 er176 (71) 

X exp{- -n f l ( l ln(L)q2--~rCLC21q[)})~(~  (72) 

Clearly, if ~r < (ln L)/4~cLca, then the exponent 

1 
4-~ In(L) q2 _ acLc2 IqL 

is negative for all q, yielding 

II~n)lll ~< 2n~6~(/~) tl~<~ 1 (73) 

with In 61 = 2 In(L) - /3 [ ( ln  L)/4rc - acLc2]. 
Requiring that 

a < cl/32 ~ rccLc~ (74) 

guarantees that for all q the value of/3 at which ~' leaves A. occurs prior 
to/~+(q). This establishes the result. | 

4. M O D E L  W I T H  A N N E A L I N G  

Annealing corresponds to the situation in which the disorder is in 
thermal equilibrium with the rest of the system. Formally, the annealed 
partition function is given by 

Z a n  n = E~(Z~) (75) 



Quenched Disorder in a Cou lomb Gas 1119 

The behavior of the annealed Coulomb gas can be studied using this 
partition function. 

Explicitly computing the average in Eq. (75), we can deduce the 
equation satisfied by the charge activities as the model is scaled from length 
L n- 1 to length L n to be 

~(n)(qb) = e[ - - ( f l / 4 rc ) ln (L )+( f12cr2 /321nL)k (L ,n ) ]  q~(~(n--1) ,~(n--l))(qb ) (76) 

where 
)~(O)(q) = 2(O)(q) e[32a2q2co/2L 

with 2 (0) the initial single-site charge activity of the model, and 

k(L, n) = ln(L) + (c,/L n) 

with c n an increasing sequence of negative numbers with 0 <  Ic,I < 1. If 
the activities ~(o) satisfy 3/~ ~(o/(_q), this property will be preserved 
under this transformation. 

If we take .~(0) to be in ll, then the convolution is in l~. However, , ~  
need not be in 11 because the exponent in Eq. (76) will be positive if/3 is 
sufficiently large and there is no way to guarantee the summability of the 
resulting quantity. 

Define /3c = 8(ln 2 L)/rca2k(L, 1). Then for all /3</3c the exponent in 
Eq. (76) is negative, and 2(")e li for all n. For this range of temperatures 
the transformation (76) makes sense. 

We can rewrite this equation in terms of the nonzero charge activities, 
yielding 

e(n)(q) = [ H~ .... T(e(n- i~) ](q) (77) 

where for any f ~ l l ,  H~ .... (q) is given by 

/320"2 k (L ,n ) lq~} ) f (q )  (78) (H~ ..... f)(q) = (exp { I  - f-f~ ln(L ) + 3~-i--~n L 

and T is defined by 

2e + (~ * e) 
T(e) = (79) 

1 + (~ �9 ~)(0)  

Note from Eq. (77) that HT has a true fixed point at e = 0. The set of e's 
for which this equation is defined is the subspace S of the space I1, 

S =  {eel~ I e(O)=O, e(q)=e(-q)}  (80) 

and HT: S ~ S, for/3 </3c. 

822/68/5-6-29 
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The following result can be obtained from a modification of the 
arguments of Marchetti and Perez/31) 

T h e o r e m  3. Let /3</3c. Then there exists an interval [ /3_,/3+] 
with/3 + ~</3c such that if/3 E 1-/3 ,/3 + ] and ~ is sufficiently small, then for 
all e(~ S the following holds: 

_< ( 7 "~ (n- n 
Ile<n)ll, ~ \ � 8 9  Ile(~ (81) 

Let e(~ S. Then, by HSlder's inequality, 

Ile(l>ll j = liMa, . T(e(~ i (82) 

2 IIM a ~e(~ + IIHa,.(~(~ * e(~ 1 ~< , (83) 
1 + II~(~ ~ 

where the charge symmetry of e l~ has been used to write 

(e (~ * s(~ = ~ (e(~ 2 (84) 
q 

Now, using H61der's inequality on the firs term of Eq. (83) 

2 IlHa,.e(~ ~< 2 ]IHH,~fq~OH2 Ile(~ 2 (85) 

The explicit insertion of the 6q~O occurs because e vanishes for charge 0, 
suppressing the charge-0 value of Ha, .. 

The second term in the numerator yields 

IlHa,~(~(~ * e(~ ~< [IHa,~6q~OH 1 lie (~ e(~ oo (86) 

~< Ilnp,~6q#olla sup [(g(o). g(o))(q)] (87) 
q ~ 0  

~< IlH~.~6q~OI[1 Ile(~ (88) 

where HSlder's inequality has been used. So, 

2 Iln~,~6q~O]12 11~(~ + IlH~,.6q~ol[1 II~(~ 2 
1 + Ile(~ :: (89) Ile(nlll~ 

Now, when/3 </3c, 

IIH~,~6q~ol122 ~ IIH~,~6q~o]l~ (90) 
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since the exponent in Ha,~(q) is negative and the sums are finite. Equation 
(89) may be written 

2 
2 }l~(~ 2 + !l*(~ 2 (91) 

[le(1)[[ 1 ~< IlH~,~6q~olll 1 + II~(~ 

2x + X 2 
<~ HH~'~'6q#~ x>_-oSUp 1 + x 2 (92) 

~<2 []Hfi, abq#o[[ 1 (93) 

Using this estimate of e(o), we find that 

Ile(l~l[~ ~< (2 Iln~,~ll ~ + 2 []nfl, a3qr 2)[l~(O)rl~ (94) 

Estimating the first term in Eq. (94) yields 

~f( fl20"2 ..Jx., llU ~ ~ ) } 2 ]lH~,~6qeOlt~=supexp [\~-3--i-2--F~rk(L, 1 ) -  l nL  q 2 + 2 1 n L  (95) 
qr 

} ~< exp (32--2-~n L k(L, 1 ) - ln(L) + 2 In L (96) 

for fl<fl~. If 

then 

fl2~2 k(L, 1) - @-ln(L) + a  2 l n L  < - 4  l n L  
32 In /., L4/~ 

(97) 

2 rlg~,~ll ~ < �88 (98) 

The condition given by Eq. (97) is satisfied if fl lies in the interval 
(fl(1), f12)), where 

f12 ) = �89 _+ [1 - (96g/f lc)]  1/2 } (99) 

Since tic oc 1/a 2 if a is sufficiently small, both roots will be real and fl~) will 
satisfy fl~) < tic. 

Now we estimate the second term in Eq. (94), 

( )2 
2 Ilga,~6q~oll2=2 2 ~ e Ufl2a2k(L'2)/2) (flln(L)/4g)]q2 ( 1 0 0 )  

q>O 
~1/3  (101) 

where, in Eq. (100) use has been made of Eq. (97). 
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Using the estimates in (98) and (100) with Eq. (94), we obtain the 
estimate 

kl~<l>ll ' < 7  ii~<O>ll ' (102) 

Repeating this argument establishes that 

(7V-1 
Ibe(~)ll l ~< \~-~] Ib~(~ i (103) 

However, the range of permitted fl changes each time because the factor 
k(L, n) appearing in the equivalent of Eq. (97) depends on n. The intervals 
(fi("), fi~)) will have nonzero intersection provided fl(~)< fl~), which holds 
provided ~ is sufficiently small. | 

Thus, for at least the nonempty range of temperatures j~ e (fl(~*), fi~)), 
and for ~ small enough, there is a phase in which the charge activities 
converge to zero on sufficiently long length scales. 

The very low-temperature behavior of this model is also of interest. 
While it is true that the transformation of the charge activities will not 
necessarily produce summable sequences, for a finite sequence there is no 
trouble for a finite number of iterations. Choosing the initial activities to be 

= {1 if q =  +1 ~(q) 
0 otherwise (104) 

then 

2 if q =  +1 
T(e)(q) = 3 if +2 (105) 

5 q = -  

and 

I 2  B2o 2 
-3 expI-~fl~-ln(L)+'-~--k(L'2)tt'*,~) if q =  _+1 

~exp 4 - ~ l n ( L ) + ~ - - k ( L ,  2) if q=_+2 

For sufficiently small fi the dominant value of the activities occurs for 
charge +2. At each further iteration we double the magnitude of the 
largest possible charge. For fl small enough, e(n)(q) takes on its largest 
value for charges of the largest magnitude. Thus, if f l> fi~., the system 
becomes unstable with respect to the formation of charges, and large 
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charges exist on all length scales. It is clear from this last example that for 
fl > tic the free energy of the annealed system will fail to exist because 
the largest charge appearing in the exponent of the activities will be 
proportional to the volume. 

5. C O N C L U S I O N  

In this work I have adapted the hierarchical Coulomb gas model of 
Marchetti and Perez to include quenched disorder interacting with the 
charges via a potential that has a power law decay with distance. This 
potential is intended to approximate the random dipole potential con- 
sidered previously by RSN. Nonlinear equations describing the evolution 
of the "random" single block charge activities were derived. These 
equations were then studied in a "linear" approximation in the hope of 
finding evidence of a new, second low-temperature phase transition. 

In each of the cases considered, no evidence for the new low-tem- 
perature phase transition was found. In each case the net of 11 functions 
describing the single block activities for nonzero charges converged, with 
probability one, to the KT fixed point (i.e., 0 ~ ll), for fl sufficiently large, 
although in the case a = 1 the variance was required to be small. 

It may be that the nonlinear portion of the transformation of the 
charge activities cannot be neglected and is crucial to the appearance of the 
reentrant transition. This portion of the transformation is much more 
difficult to control, however, and it has not been possible to produce results 
concerning the full transformation. 

An analysis of the annealed model indicates that this model exhibits a 
KT phase only in an intermediate range of temperatures. At sufficiently low 
temperatures this model becomes unstable to charge formation with large 
charges forming on all length scales. It is unclear if this behavior is 
connected to that found by Rubinstein, Schraiman, and Nelson in their 
quenched model. 
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